
Ptolemaics meeting 4 & 5 & 6 : part I

December 16, 2013

These last ones have been quite interesting meetings, I’m happy about
how the whole thing is turning out. Sadly I’m very slow at typing and
working out the ideas, so I have to include three different meetings in one.
Since the notes are getting incredibly long, I’ll have to split it in at least two
parts.
Let me get finally into the time frequency of the Walsh phase plane. I won’t
include many proofs as they are already well written in Hytönen’s notes (see
previous post). My main interest here is the heuristic interpretation of them
(disclaimer: you might think I’m bullshitting you at a certain point, but I’m
probably not). Ideally, it would be very good to be able to track back the
train of thoughts that went in Fefferman’s and Thiele-Lacey’s proofs.
Sorry if the pictures are shit, I haven’t learned how to draw them properly
using latex yet.

1 Brush up

Recall we have Walsh series for functions f ∈ L2(0, 1) defined by

WNf(x) =
N∑
n=0

〈f, wn〉wn(x),

the (Walsh-)Carleson operator here is thus

Cf(x) = sup
N∈N
|WNf(x)|,

and in order to prove WNf(x)→ f(x) a.e. for N → +∞ one can prove that

‖Cf‖L2,∞(0,1) . ‖f‖L2(0,1).
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There’s a general remark that should be done at this point: the last inequality
is equivalent to

|〈Cf, χE〉| =
∣∣∣∣∫
E

Cf dx
∣∣∣∣ . |E|1/2‖f‖L2(0,1)

to hold on every measurable E (of finite measure).
This is because in general an estimate of the kind

|{x : |Tf | > λ}| . ‖f‖
q
Lp

λq

is equivalent to∣∣∣∣∫
E

Tf

∣∣∣∣ . ‖f‖Lp |E|1/q′ ∀ measurable E.

To see why, suppose the first is true and take E arbitrary: then by triangular
inequality for the integral it is equivalent to estimate∑

k

2k
∣∣{x ∈ E : |Tf | ∼ 2k}

∣∣ =:
∑
k

2k |Ek|,

and we easily have |Ek| ≤ min{|E|, 2−qk‖f‖qLp}; the second then follows
by summing (optimize according to this last inequality). Now if you sup-
pose the second one is true instead, and consider positive/negative parts of
real/imaginary parts of Tf , you just have to take E ⊂ {x : |Tf | > λ} of
finite measure, and let it approach the whole set. It follows immediately that
the first one holds.
So, we can content ourselves with proving∣∣∣∣∫

E

Cf dx
∣∣∣∣ . |E|1/2‖f‖L2(0,1).

2 Walsh wave packets

In the previous post I’ve stated some properties of the Walsh functions, one
of which was that if m⊕n = m+n (i.e. their binary digits are complementary
when overlapping) then

wm+n = wm · wn.
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It’s actually true in general, by what seen in previous post, that

wm⊕n = wm · wn.

Now, the Walsh functions are an orthonormal basis for L2(0, 1), thus if you
consider functions as linear combinations of Walsh functions, multiplying by
wm is equivalent to “shifting” by ⊕m the indices of the Walsh functions that
compose f - or equivalently to shift the Walsh transform Wf by ⊕m. Bear
in mind the field Z2[[X]] has order two, so shifting in this setting doesn’t
necessarily resemble shifting in R. Anyhow, from the group point of view,
this is analogous to what happens when you modulate an L2(R) function by
e2πixη: you’re shifting its Fourier transform by η. Modulation in time equals
translation in frequency and viceversa. Hence we can follow the analogy and
consider the phase-plane point of view on the Walsh transform. This is just
Z2[[X]]× Z2[[X]].
We need to introduce wave packets associated to rectangles I × ω according
to the principle that the time interval I contains information about the time
localization, and ω about the frequency. Define thus the packets as

wI×ω(x) =
1

|I|1/2︸ ︷︷ ︸
L2 norm. factor

· χI(x)︸ ︷︷ ︸
time localization

· e
(
x⊗ (|I|ξω)

|I|

)
,︸ ︷︷ ︸

freq. modulation

where ξω is the left endpoint of ω.
We look a bit more in detail into the localization properties of such wavepack-
ets. Notice that if ξω = 0 then it is just |I|−1/2χI . Its Walsh-Fourier transform
is

|I|−1/2χ̂I(ξ) = |I|−1/2
∫
I

e(x⊗ ξ) dx = |I|−1/2e(xI ⊗ ξ)
∫ |I|
0

e(x⊗ ξ) dx,

and the value of the integral is calculated as follows: it is

a−1(x⊗ ξ) =
∑

m+n=−1

xmξn mod Z2,

where on the integration interval xm ≡ 0 for m ≥ log2 |I|; it follows that the
integral factor is constant in ξ on intervals of size 2− log2 |I| = |I|−1. If ξ is 6= 0
then e(x ⊗ ξ) will be +1 half of the times on [0, |I|], and −1 the rest of the
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times, so that the interval is zero. On the contrary, if ξ = 0 then the integral
is |I|. Summarizing

|I|−1/2χ̂I(ξ) = |I|1/2χ[0,|I|−1](ξ)e(xI ⊗ ξ).

This is remarkable: the Walsh-Fourier transform is still localized! This means
that the frequency projection multiplier

π̂ωf(ξ) := χω(ξ)f̂(ξ)

is convolution with
|ω|χ[0,|ω|−1](x) e(x⊗ ξω).

Remark 1. Let’s make clear what a dyadic interval is, given the mapping
between reals and Laurent series. Given a dyadic interval [j2k, (j + 1)2k[,
let P (X) be the polynomial representation of j; then the interval on Z2[[X]]
contains all the polynomials of the form P (X)Xk + Q(X), where Q(X) is
any Laurent series with deg(Q) < k.

2.1 Uncertainty Principle in the Walsh phase-plane

We are tempted to localize both in time and frequency in the Walsh plane.
If we do so, we obtain

πωχIf(x) = |ω|
∫ |ω|−1

0

χI(x⊕ y)f(x⊕ y)e(y ⊗ ξω) dy.

Look at the characteristic function inside the integral. For that to be = 1, it
must be x⊕ y = P (X)Xk +Q(X), where |I| = 2k, and deg(Q) < k. On the
other hand y is of the form Q(X) with degQ < −l, where |ω| = 2`. If we
assume −` ≤ k something magic happens:

x⊕ y ∈ I ⇔ x ∈ I !

This is because the degree of y is too small to affect the sum x⊕ y, relatively
to I. This means that if |I||ω| ≥ 1 then χI factors out of the integral, and
the expression becomes

πωχIf(x) = |ω|χI(x)

∫ |ω|−1

0

f(x⊕ y)e(y ⊗ ξω) dy = χIπωf(x),
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i.e. if the tile I × ω has area 1, then the associated time and frequency
localizations commute with each other! Let me state that once again:

|I||ω| ≥ 1 ⇒ πωχI = χIπω.

Remark 2. This NEVER EVER happens in the real case, as χIπωf has
bounded support, while πωχIf has unbounded support (because its Fourier
transform has bounded support).

Why is this relevant to us though? well, χI and πω are projections and in
particular they are self-adjoint; commutativity ensures both that the operator
πωχI is self-adjoint, and that it is idempotent. Therefore πωχI is a projection
operator. See below for how is this related to the wavepackets.
Anyway, what happened there? That’s the Uncertainty Principle at work.
It’s lurking behind the tiles, and it suggests us to restrict our attention to tiles
P of area ≥ 1. Actually it’s best to restrict ourselves to only consider tiles of
area exactly 1 (so that they are “critical”). The reason for that is that if we
assume area 1 (or constant, in general) then there is a 1-to-1 correspondence
between areas of the phase-plane (made of tiles) and the linear spans of the
wavepackets associated to those tiles. This might sound confusing, so I will
restate it properly in a moment; I need to fix some definitions first.
DISCLAIMER: from now on, by tile I mean a dyadic rectangle with area
1. Since it will be useful, I will also introduce bi-tiles, which are dyadic
rectangles of area 2. In particular, if you split a bi-tile P in two halves
horizontally, then you get two tiles, the lower half being denoted Pd and the
upper half Pu.
Let’s rewrite the expression for the wavepackets: since |IP ||ωP | = 1, there’s
an integer nP such that we can write

ω =

[
nP
|IP |

,
nP + 1

|IP |

[
;

then the wavepacket associated to P is

wP (x) :=
1

|IP |1/2
χI(x) wnP

(
x

|IP |

)
.

For example,
w[0,1]×[n,n+1[(x) = wn(x)
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The operators πωχI deserve their definition as well, and we write

ΠP := πωP
χIP

for the phase projection.
The property we just mentioned above is the fact that given two collections
of tiles P and Q, the spans of the wP ’s and wQ’s will coincide. In detail, the
following holds:

Proposition 3. If P is a collection of tiles and Q is a tile such that

Q ⊂
⋃
P∈P

P,

then
wQ ∈ Span{wP : P ∈ P}.

The proof is easy and works out thanks to the combinatorics of the dyadic
intervals, and the following elementary fact: the tiles in this picture

have the same span as the tiles in this picture

provided they cover the same portion of the phase-plane.

Proof. Suppose Q is not contained in P otherwise it’s all trivial. First of all
discard all the unnecessary tiles in the collection. We know that wavepackets
with disjoint tiles are orthogonal to each other, so that we can forget about
the tiles in P that don’t intersect Q - i.e. assume all of them do intersect
Q. We can then discard some more tiles actually, and be left with a minimal
collection P that covers Q but is made only of vertical tiles (i.e. with IP ⊂ IQ
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and then ωP ⊃ ωQ because the area is constant) or horizontal ones (the
opposite of vertical). This is because a vertical tile necessarily covers an
entire strip (here we’re using the constant area hypothesis!), since ω ⊃ ωQ:
then if a point (x, y) ∈ Q is not covered by vertical tiles, all of {x} × ωQ is
not covered. Thus the strip must be covered by horizontal ones, and those
have a time interval larger than IQ! therefore they cover all of Q and you
can forget about the vertical ones (same thing works in the other way).
At this point, assuming only a minimal cover of horizontal tiles, we’re halfway
done: call P the widest one and P ∗ := IP × ω∗P , where ω∗P is the sibling of
ωP ; then P ∗ ∩Q 6= ∅ as well (by nestedness of the dyadic intervals), and P ∗

must belong to the collection too, since if the area I × ω∗P were covered by
a tile shorter than P , this tile would cover P ∩Q as well, which contradicts
minimality.

Q
P

P ∗P ′ P ′′

Thus we have a couple of congruent tiles P, P ∗, both contained in the
collection. By the remark stated before this proof, we can substitute P, P ∗

with the tiles P ′, P ′′ as in figure, without altering the span; but if P is wider
than Q then only one of these tiles will intersect Q (tile P ′′ in the figure), so
we can discard the other one.
Now one applies this step inductively and gets an algorithm that stops once
it gets to the full tile Q, which then belongs to the span of P.

I think the above arguments should provide sufficient motivation for the
choice of wavepackets associated to tiles of area 1. As a further remark,
I would like to point out that the choice of the particular expression for
the wavepackets is absolutely natural once the above phase projections have
been taken into consideration. As a matter of fact, as one can imagine,
all the projections ΠP can be obtained one from the other by translations,
modulations and scaling. In particular one can concentrate on the simplest
one, namely for P0 = [0, 1]× [0, 1], and see that

ΠP0f = χ[0,1](x)

∫ 1

0

f(x⊕ y) dy,
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and given the first factor in the RHS we see that this is equal to

ΠP0f = χ[0,1](x)

(∫ 1

0

f

)
,

i.e. the ΠP ’s have all rank 1. This is remarkable, because it tells us there’s
a function φP such that for f ∈ L2

ΠPf = 〈φP , f〉φP ;

in the above case it is
φ[0,1]×[0,1] = χ[0,1].

What is φP ? well, we can obtain it by translation modulation and scaling of
the above φ[0,1]×[0,1], and what we get is

φP (x) =
1

|IP |
χIP (x)e(|IP |−1x⊗ ξωP

),

which is exactly the wavepacket wP !

3 Rewriting WN in a useful form

How do we exploit the phase-plane structure efficiently? well, first of all
we need to write WNf(x) in terms of wavepackets. By definition the Walsh
function of index n restricted to the interval [0, 1] is the wavepacket of tile

[0, 1]× [n, n+ 1[,

and therefore

WNf(x) =
∑

P : IP=[0,1],ωP⊂[0,N ]

〈f, wP 〉wP (x).

Thus it is a projection onto a subspace of wavepackets. This collection of
tiles is a very lame and uninteresting one though - just some squares stacked
on top of each other. What will happen if we change the set of tiles? well,
as the proposition above tells us, as long as the tiles cover the same area in
the phase-plane, the linear spans of the associated wavepackets are exactly
the same. And since the operator is a projection and the wavepackets are
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orthogonal if the corresponding tiles are disjoint, it follows that the operator
will stay the same if we cover is another collection of disjoint tiles!
Therefore, we look for another cover of the rectangle [0, 1] × [0, N ]. To find
one, we use an idea that already appeared in the first post of this series. Let
me recall it briefly: we had an integral on an interval ]−∞, α] and a dyadic
system on R (doesn’t matter which particular one); we wanted to decompose
it into a sum of integrals

∫
ω

where ω was a generic dyadic interval in the
system. What we did was to write∫

]−∞,α]
f =

∑
ω` s.t. ωr3α

∫
ω`

f,

i.e. we sum on all left halves of dyadic intervals such that the right half
contains α.
We now do the analogue in this case: we are interested in bitiles P (which
correspond to the ω’s) such that the upper half Pu contains the frequency
N - or, to be precise, N ∈ ωPu . The further condition is that the tiles have
time support in [0, 1] obviously. And then we sum in the lower tiles Pd. In
formulas ∑

Q s.t. IQ=[0,1],ωQ⊂[0,N ]

=
∑

Pd s.t. IP⊆[0,1], ωPu3N

(notice on the left Q is a tile, while P on the right is a bitile). The partial
Walsh-series is now

WNf(x) =
∑

Pd s.t. IP⊆[0,1], ωPu3N

〈f, wPd
〉wPd

.

Pretty neat! Now the time support of the tiles is allowed to be smaller than
[0, 1], there’s more freedom to generalize. It takes a little to realize what kind
of partition we get, so here’s a picture to help your intuition:
We are ultimately interested in estimating the size of 〈Cf, χE〉; recall the
other important idea introduced in the first post of this series: linearization
of the supremum! It means we rather want to prove an estimate∣∣〈WN(·)f, χE

〉∣∣ . ‖f‖L2 |E|1/2

uniformly in the measurable function N(x). That means we want to estimate∫
E

WN(x)f(x) dx =

∫
E

∑
Pd s.t. IP⊆[0,1], ωPu3N(x)

〈f, wPd
〉wPd

(x) dx;
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Figure 1: On the left the original tiling for N = 7, on the right our new
tiling.

=

∫
E

∑
Pd s.t. IP⊆[0,1]

〈f, wPd
〉wPd

(x)χωPu
(N(x)) dx

we introduce sets
EP = E ∩N−1(ωPu)

so that we can write the last integral as∑
Pd s.t. IP⊆[0,1]

〈f, wPd
〉 〈wPd

, χEP
〉.

The sets EP contain exactly those points in E such that N(x) ∈ ωPu as
required. Now, the collection of bitiles P with time support ⊂ [0, 1] have
nothing special; therefore we will work in general with the sums∑

P∈P

〈f, wPd
〉 〈wPd

, χEP
〉, (♣)

where P is any collection of bitiles in the Walsh phase-plane. Our estimates
will need to be uniform in P of course, but the freedom this gives is worth
the trouble.
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4 Trees of tiles

In his seminal proof, Fefferman introduced a particular structure on tiles:
the Tree. The definition requires a partial ordering on the bi-tiles (or tiles),
which is as follows: given tiles P,Q, it is

P � Q

if and only if
IP ⊃ IQ and ωP ⊂ ωQ

(thus they intersect, and the one with smaller time support is the “smaller”
one).

Q

P

Figure 2: Here P � Q, as IP ⊃ IQ and ωP ⊂ ωQ.

Then we say that a finite collection of bi-tiles T is a tree with top bi-tile
T ∈ T if and only if

P � T ∀P ∈ T.

T

Figure 3: This is a tree T, with top bi-tile T (the thickened one).

One has the notions of up-tree and down-tree requiring respectively that
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Pu � Tu and Pd � Td (so, the upper half of the collection is a tree, or the
lower half). It is possible to decompose every tree in its up-tree and down-
tree part (the share the top tile, but only that); for example, for the tree in
figure one has the following decomposition:

T

Figure 4: This is the up-tree part of T.

T

Figure 5: This is the down-tree part of T.

I think of trees as clumps of narrow elongated tiles that intersect a single
larger tile - the top tile, or root. Notice an up-tree is a more concentrated
clump, as the upper half of any tile in the tree still has to intersect (the
upper half of) the top tile, so that the center of the frequency support of
any tile in the tree cannot be too far from that of the top tile T . This is not
necessarily true of a down-tree, as it can contain very narrow and tall tiles,
with the frequency support potentially unbounded. The figure I’ve included
should make it clearer.
The useful lemma that follows highlights the pros of the up-tree structure
and takes to a conclusion the idea I’ve just sketched:
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Figure 6: On the left: a typical down-tree. On the right: a typical up-tree.

Lemma 4. Let T be an up-tree with top tile T . Then for every (up-)leaf
P ∈ T we can write wP in terms of wT as follows:

wPd
(x) = εP,T

1

|IT |1/2
wTu(x) hIP (x),

with ε’s some signs ± that depend on the tiles and hIP the Haar function
supported on the interval IP (L2 normalized as it’s customary).

The proof can be obtained just by unwinding the definitions, but that
doesn’t say much about it. Here’s why we should expect something like the
above to hold. P being a leaf means just that Pu ≤ Tu, and in particular
that they intersect (and P is taller than T , and away from the zero frequency
as well - this is important) both in time and frequency. Thus it should be

c(ωP ) ∼ c(ωT )

(notation: c(I) is the center of the interval I; we also ignore the pedices to
ease reading), which means that the ratios frequency/support size should be
comparable, namely

nT
|IT |
∼ nP
|IP |

.
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(for a down-tree you could only say c(ωP ) & c(ωT ).)
You can think of nP as the “number of times wP oscillates” (a frequency

indeed). By the above we expect wP to oscillate about |IP ||IT |nT times. We also
know it is supported in IP . Think of it in a purely probabilistic perspective:
wT oscillates about nT times within an interval of length |IT |, P is a tile
roughly in the same location on the phase plane but with smaller support, of
size |IP |. We can naively expect wP is almost a restriction of wT on support

IP , so that it will capture only a fraction of about |IP ||IT | of the oscillations
of wT . The lemma is saying that this perspective is not completely wrong
indeed.
By definition of wave packet it is

wP (x) = (normalization factor) · χIP (x) · wnP

(
x

|IP |

)
,

so we expect wP could be expressed by (ignoring normalization factors)

∼ w
nT
|IP |
|IT |

(
·
|IP |

)
χIP .

In general it is w2kn(x) = wn(2kx), and we can pretend that “morally” this
holds for negative k as well (it does if the resulting index is integer), so that
since the lenghts are powers of 2

w
nT
|IP |
|IT |

(
·
|IP |

)
χIP ∼ wnT

(
|IP |
|IT |

·
|IP |

)
χIP ∼ wT (·)χIP .

This is exactly what I said above: naively one expects wP to be just wT ·χIP !
By the above lemma it is almost so, the main difference being that we have
hIP instead of χIP , which has the effect of changing the sign on the right half
of the support, and Tu in place of T . As a last remark on the above equality,
the lemma says that the factor wTu accounts for all oscillation in an up-tree.

So, the notion of tree has some advantages, namely that the wave packets
are all essentially restrictions of the top tile’s one, and calculations seem to
be more easily carried over on trees (judging by the notes). But I don’t find
this answer satisfactorily enough: why should we care for trees in the first
place?
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A better answer is that trees are associated to operators that are Calderón-
Zygmund like. We’ve considered orthogonal projections of the form∑

P∈P

〈f, wPd
〉wPd

,

and it is therefore natural to consider weighted projections of the form

ΠPf(x) =
∑
P∈P

aP 〈f, wPd
〉wPd

(x)

for some weights aP . These operators are bounded on L2 for `2 weights, as
it can be easily verified that

‖ΠP‖L2→L2 .

(∑
P∈P

|aP |2
)1/2

.

Now, as we did for the euclidean Fourier transform, this can be rewritten as

ΠPf(x) = f∗

(∑
P∈P

aPwPd

)
(x),

where ∗ is the convolution w.r.t. to ⊕. Now, suppose P is an up-tree, so that
the above lemma applies, and all the wave packets simplify to

ΠPf = f∗

(
wTu
|IT |1/2

∑
P∈P

εP,TaPhIP

)
.

Forget about the signs ε’s since we can incorporate them into the weights;
we now have as a kernel of ΠP the product

wTu
|IT |1/2

∑
P∈P

aPhIP ,

where the only phase factor is wTu and the terms in the sum show very little
oscillation: it is just a linear combination of Haar functions with support con-
tained in IT . They correspond to the tiles of the form I×[|I|−1, 2|I|−1[, which
are sometimes called lacunary tiles. Moreover, the function

∑
P∈P aPhIP
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has zero mean on IT and all the terms are supported in IT by definition of
up-tree. So, the kernel is

1

|IT |1/2︸ ︷︷ ︸
normalization factor

· wTu︸︷︷︸
oscillatory factor

·
∑
P∈P

aPhIP︸ ︷︷ ︸
kernel with cancellation

.

This operator is thus the analogue in the Walsh setting of something like

e−2πiCx︸ ︷︷ ︸
oscillatory factor

· Q(x)︸ ︷︷ ︸
kernel with cancellation

,

which falls under the scope of Calderón-Zygmund theory. It is a particu-
lar case of the case treated in Ricci, Stein, “Harmonic analysis on nilpotent
groups and singular integrals I: oscillatory integrals”, Jour. of Func. Analy-
sis, 73, pg 179-194 (1987) which is kernels of the kind

e−2πiP (x,y)K(x− y)

with P a polynomial and K a homogeneous kernel of critical degree −n (the
dimension) and zero average on the sphere. I was planning to write about
that paper anyway (half of the blog entry is already there), so stay tuned if
you are interested.
Resuming, the operator of weighted projection associated to an up-tree is a
Calderón-Zygmund object, and as such we expect that standard techniques
will apply to bound it properly (it is indeed so). For a down-tree we don’t
have such a nice formula as for the up case, and indeed one can figure out
that once the tiles in the down-tree get very narrow, their frequency must be
0; we correspondingly expect that there’s no cancellation to exploit in these
operators, and as a matter of fact this is indeed the case, as we will see in
the following part of these notes.

Enough for today.
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